MOCVD grown Metamorphic InAlAs/InGaAs HEMTs on GaAs substrates

Chak-wah TANG, Jiang LI, Kei May LAU, and Kevin J. CHEN

Electrical and Electronics Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, Email: ewilson@ust.hk; Phone: (+852)-2358-8372

Keywords: Metamorphic, MOCVD, MHEMT, GaAs substrate, InAlAs/InGaAs, LT buffer

Abstract

We report MOCVD-grown metamorphic InAlAs/InGaAs HEMTs with good device performance, by introducing a multi-stage buffer growth scheme. Room temperature Hall mobility of the 2-DEG was over 8000 cm\(^2/V\cdot s\) with sheet carrier densities larger than 3 \(\times 10^{12}\) cm\(^{-2}\). Transistors with 0.7\(\mu\)m gate length exhibited transconductance up to 427 mS/mm and current gain cut off frequency (\(f_{TB}\)) of 48GHz.

INTRODUCTION

MHEMTs by MBE have been demonstrated with huge successes [1, 2] in the past few years. Metamorphic technology by MOCVD is much lagged behind MBE and there have been very scarce reports, particularly with device results. One major difficulty has been the growth of metamorphic RF devices on GaAs substrates by MOCVD with a high resistivity buffer. Significant buffer leakage is detrimental to the RF operation of HEMTs. We have developed a multi-stage buffer growth technique to achieve high resistivity in the buffer layer leading to good device performance. This sets the stage for potential MHEMT manufacturing by MOCVD.

MATERIAL GROWTH AND DEVICE FABRICATION

Metamorphic \(\text{In}_{0.51}\text{Al}_{0.49}\text{As/In}_{0.53}\text{Ga}_{0.47}\text{As}\) HEMTs were grown on 4-inch (001) oriented semi-insulating GaAs substrates using an Aixtron AIX-200/4 MOCVD system. CB\(_4\) was used as C dopant source for one of the buffer layers. The epitaxial structure is shown in figure 1.

The growth temperature of the first InP metamorphic buffer layer was varied from 450 to 600\(^\circ\)C. Another low-temperature (LT) InP: C layer (buffer 2) grown at 500\(^\circ\)C serves as a high resistivity buffer. Significant buffer leakage is detrimental to the RF operation of HEMTs. We have developed a multi-stage buffer growth technique to achieve high resistivity in the buffer layer leading to good device performance. This sets the stage for potential MHEMT manufacturing by MOCVD.

RESULTS AND DISCUSSION

From the Hall Effect Measurements, the electron mobilities of the MHEMT structure were 8,010 and 21,900 cm\(^2/V\cdot s\) with sheet carrier densities of 3.30 \(\times 10^{12}\) cm\(^{-2}\) and 3.16 \(\times 10^{12}\) cm\(^{-2}\) at 300K and 77K, respectively. In our preliminary studies, buffer leakage problems resulted in MHEMTs that could not be pinched off, which was traced to some unintentional conductive impurities in the buffer and substrate interface. Buffer leakage was also problematic in lattice-matched HEMTs by MOCVD due to conductive impurities within the buffer and substrate interface [3]. High resistivity buffer layer is the key to good RF device performance. Effectiveness of the InP:C and InAlAs buffer grown at LT was demonstrated by step-etched Hall measurements. With removal of the active layers, the material changed to very high resistivity and eventually exceeded measurement limit of the Hall system. In our devices, all the layers are compositional lattice matched to InP. Figure 2 shows the HR-XRD rocking curve of a MHEMT grown on a GaAs substrate. The single peak, locating at 31.67 degree with a FWHM of 340arcsec, indicates excellent lattice matching of the multi-layered...
buffer and the active device structure, and reasonably
good crystalline quality.

Fig. 2 HR-XRD rocking curve of a MHEMT

Shown in figure 3 is an AFM image of the MHEMT
structure. The RMS value of the surface roughness was
2.3nm scanned across a 2µm x 2µm area.

Fig. 3 AFM image of a MHEMT surface.

Encouraging device performance was obtained on
the MOCVD grown MHEMT devices. Fig. 4 shows the
DC result of the device, with kink-free I-V characteristics.

The off-state breakdown was around 6V at Vg = -1.6V.
From the DC measurement, the maximum saturation
Current $I_{DS_{max}}$ was determined to be 660 mA/mm at $V_{DS} =
1.5V$. Transistors with 0.7µm gate length exhibited
transconductance up to 450mS/mm (Figure 5). The RF
current gain cutoff frequency of 48GHz was shown in
figure 6. Maximum oscillation frequency (f_{Max}) was
around 56GHz.

Fig. 4 Output characteristics of a MHEMT

The SEM photo shows a device with 1.5µm gate length
and 50µm width on each finger.

Fig. 7 SEM photo of a transistor
CONCLUSIONS
We have successfully grown metamorphic InAlAs/InGaAs HEMTs by MOCVD techniques with good device characteristics, by introducing a multi-stage buffer growth. We believe the DC and RF performance of the devices is among the best by MOCVD.

ACKNOWLEDGEMENTS
The authors would like to thank Rohm and Haas Electronic Materials LLC who kindly supplied the metalorganic precursors for our work. The project was funded by a grant (ITS176/01B) from the Innovation and Technology Commission of Hong Kong and a CERG grant (HKUST6249/02E) from the Research Grants Council of Hong Kong.

REFERENCES

ACRONYMS
MOCVD: Metalorganic Chemical Vapor Deposition
MHEMT: Metamorphic High Electron Mobility Transistor
2DEG: 2 Dimensional Electron Gas
LT: Low Temperature